

Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Stop, Drop And Circulate An Engineered Approach To Coiled Tubing Intervention in Horizontal Wells

Charles Pope Complete Shale

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Agenda

- Global coiled tubing usage
- Problems with historical practices
- Results from a few case histories
- Take away

Where and how coiled tubing is used

Coiled Tubing Intervention

Initial Completion:

- Well Prep
- Perforating
- After Frac Drillouts
- Coiled Tubing Fracs

Cleanouts Prior to:

- Acid Stimulation
- Chemical Treatments

Also used for:

- Logging
- Fishing
- P&A

Typical Wellbore Configuration

Annual Horizontal Wells Drilled

[•] Sources: Rystad Energy, 2017; Baker Hughes

Active Coiled Tubing Units

1472 Active Units

Horizontal Wells Drive Larger Pipe

NOV/Quality Tubing 2017

Why is this Important?

28% of spend

Spent \$60MM

Average costs \$250k

Top 10 drillouts cost \$17MM

Cost overruns on 30% of wells

Stuck pipe: 1 well in 16

Historical Practices

- Very little engineering support
- Applied vertical well techniques
- Short trips
- Gel sweeps
- No digital data gathered

Short Trips

- Short trip is pulling out of the hole
 - Usually into the vertical
- Uses the Bottom Hole Assembly to

How Common is Stuck Pipe?

- From 2001 to 2010: stuck pipe incidents increased 43%. (Burgos, SPE 163914)
- 2012 in BC: stuck ~0.25 hrs per plug. (Lyndsey, SPE 178644-MS)
- From 2013 to 2015: 600 interventions, stuck 14 hrs per well. (Pope, SPE 187337-MS)

Causes of Stuck Pipe

- Sand cleanouts represent biggest hazard
- Routine interventions account for 63%

Where do we get Stuck?

Location of stuck pipe event normalized by lateral length

- 26 confirmed events
 - 22 short trips
 - 2 when picking up off bottom
- No stuck events in curve
- 85% of time stuck pipe is related to the short trip

Effect of Short Trips on Time

Example: 16,500 ft 30 Plugs

Velocity and Viscosity

Model Parameters: 5 ½" Casing 2" Coiled Tubing 3 BPM 175 fpm 108 cp

Lift and Drag Forces

Modified from Farajzadeh, 2004

Investigate Laboratory Results

- Observe the fluid-debris interaction
- Are basic assumptions about hole cleaning valid?
- Many service companies have flow loops
- Several Universities have horizontal flow loop consortiums

Debris Movement Viscous Fluid

200 Funnel vis, 3 BPM, 260 fpm

Debris Movement in Slickwater

27 Funnel vis, 3 BPM, 260 fpm

Annular Velocity and Reynolds Number

$$Re = \frac{928*\rho*v*(d2-d1)}{60*\mu}$$

Sweep Displaced by Slickwater

British Columbia Case History

Stuck Time/Plug (hrs)

- Wiper Trip Matrix
- Stuck pipe: every well
- Fluid Costs > \$40k
- Re-entrainment of solids a function of Reynolds number

DJ & Williston Basin Case History

- Single Trip Cleanouts (some wiper trips)
- Gel Sweeps minimized
- Chemical usage down 95%
- Reynolds number >20,000

Eagle Ford Shale Case History

- Single Trip Drillouts
- Non-Viscous Fluids
- ~2x plug recovery

Woodford Case History

- 33 similar wells
- 2" Coiled Tubing, 5 1/2" Casing
- 5000 ft laterals
- 30 or more composite frac plugs
- 1 coiled tubing vendor
- 1 chemical vendor
- No short trips
- No gel sweeps

Debris at Surface

- Weigh Debris
- Record Time
- Plot Data

Debris Monitoring

- Better hole cleaning
 - Higher AV's up to 300 fpm
 - Higher Re up to 50,000
- BHA is not bringing up additional debris

Sand Monitoring

- Acoustic meters provide continuous sand measurement
- Good hole cleaning • Linear response
- Well 9
- Well 10
- Well 11
- Well 12
- Curve flattens as a BHA nears the surface

Elapsed Time

Example Well

AVG AV- 286 fpm AVG RE# - 20,561 AVG SLW VIS - 30.9 Plugs - 28 HRS - 30.8 AM(tot) - 709MM PP#(tot) - 106

Woodford Results

- No stuck pipe
- Costs decreased 50%
- Time on location improved 50%

Location of Plug Debris

Cleanouts

- Moved by saltation or traction
- 1 layer at a time
- Most likely to get stuck
- In viscous fluids sand is very difficult to pick up off bottom
- Need high Re for lift

WHAT HAPPENS TO A GEL SWEEP WHEN IT IS PUMPED DOWNHOLE?

What's Drilling Doing?

- Drilling has been modeling horizontal wells for 30+ years
 - -Mud schools
 - Torque and Drag Modeling
- Developed specialized commercial cementing simulators
- Understood effect of ECDs prior to drilling
 - -Mud properties
 - Cement slurries

What happens to a gel sweep downhole?

BHA

Flow Profile

Sweep-BHA-Debris Collide

Debris doesn't move in sweep BHA encounters the debris Potential stuck or sticky pipe

How often are you stuck? BC Case History: 0.27 (2012) to 0.1 (2014) hrs per plug 600 well data set: average 14.5 hours

Polymers Breakdown

- Mechanical forces
 - Pumps, motors, bit jets, etc.
- Chemical Reactions
 - 02
- Fluid loses 65-85% of original viscosity

OTHER CRITICAL ISSUES

Low Bottomhole Pressure

- Information Gap
 - Bottomhole pressure
 - Required N2 injection rate
 - Engineers do not recommend N2 injection rates
- Field is expected to just know the correct N2 rate
 - Results in over injection
 - Drives costs higher
- Wait too long to start N2
- Several commercial models are available
- Use gas lift curves to estimate circulation bottomhole pressure

Dissolvable plugs

- Reservoir is much slower to heat up after stimulation
- Don't fully dissolve by the time ready to turn to production
- Diverters and debris left in well inhibit cleanup
- Drop in production
- Often a coiled tubing intervention is done as a precautionary
- Will improve with time and usage

Do Agitators Work?

- Breaks static friction
- Effects are localized near the BHA
- Helps get weight to the bit
- Modeling suggests maximum reach can be extended
- Keeps particles on bottom of the hole moving

Friction Reducers

- Reduces the pumping pressure
- Polyacrylamide is most common
- Does not extend reach
- More is not better
 Lab based loading
- Will not prevent stuck pipe
- Check effectiveness
 - Pump pressure before and after
 - Discontinue if not effective

Meal to Metal Friction Reducers

- Often called "Pipe on Pipe" (POP)
- Only works where there is:
 metal to POP to metal contact
- Usually batch treated
- Usually applied too late
- Will not prevent stuck pipe
- Check effectiveness
 - Weight check before and after
 - Discontinue if not effective

Warning Signs of Stuck Pipe

- Reduced or lost returns
- Abnormal weight check
- Erratic pump pressure/motor stalls
- Loss of plug debris being collected in plug catcher
- Reduction in produced sand at the surface

Preventing Stuck Pipe

Torque and Drag (TAD) Plot

What to do:

- Stop, Drop and Circulate
 - –Do not continue to pull into tight spot
- Circulate 1 hole volume
- Perform a weight check
- Repeat until surface weight returns to trend

Increase Engineering Involvement

Capture Data

- Record BHA accurately
- Weigh plug catcher debris at least hourly
- Use an acoustic meter to measure debris during drillout
- Collect fluid data (chemicals, volumes, rates)
- Coiled tubing data (depth, pipe weight, wellhead and circulating pressure, <u>injection</u> <u>rate, returns rate</u>)

"Without data we only have stories....." Charles Pope

Realtime Monitoring

Monitoring

- Send key data live
- Improves rule following

Early Warnings

- Stuck pipe conditions
- Chemical issues
- BHA failures

Take Away

An Engineering Approach

- Use bit/BHA to drillout debris
- Use fluid to clean the hole
- Improved hole cleaning
 - -High annular velocities
 - -High Reynolds numbers
- Electronically record all the data
- Learn from the data
- Observe warning signs of getting stuck
 Stop, Drop and Circulate

Thank You

- Complete Shale
- Drillout Group
- Industry Partners
- My Family
- SPE Foundation

Thank You!

Questions?

Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation Visit SPE.org/dl

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

